IDENTITAS TRIGONOMETRI PENJUMLAHAN DAN SELISIH DUA SUDUT
Rumus Trigonometri Jumlah dan Selisih Dua Sudut
1. Rumus Cosinus Jumlah dan Selisih Dua Sudut
Untuk memahami rumus cosinus perhatikan gambar di bawah. Dari lingkaran yang berpusat di O(0, 0) dan berjari-jari 1 satuan :
Dengan mengingat kembali tentang koordinat Cartesius, maka:
a. koordinat titik A (1, 0)
b. koordinat titik B (cos A, sin A)
c. koordinat titik C {cos (A + B), sin (A + B)}
d. koordinat titik D {cos (–B), sin (–B)} atau (cos B, –sin B)
AC = BD maka AC2 + DB2
{cos (A + B) – 1}2 + {sin (A + B) – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2
cos2 (A + B) – 2 cos (A + B) + 1 + sin2 (A + B) = cos2 B – 2 cos B cos A + cos2 A +
sin2 B + 2 sin B sin A + sin2 A
2 – 2 cos (A + B) = 2 – 2 cos A cos B + 2 sin A sin B
2 cos (A + B) = 2 (cos A cos B – sin A sin B)
cos (A + B) = cos A cos B – sin A sin B
Rumus cosinus jumlah dua sudut
cos (A + B) = cos A cos B – sin A sin B
Dengan cara yang sama, maka:
cos (A – B) = cos (A + (–B))
cos (A – B) = cos A cos (–B) – sin A sin (–B)
cos (A – B) = cos A cos B + sin A sin B
Rumus cosinus selisih dua sudut
cos (A – B) = cos A cos B + sin A sin B
Untuk lebih memahami aplikasi dari rumus cosinus jumlah dan selisih dua sudut, silahkan anda pelajari contoh soal berikut.
Contoh soal rumus cosinus
Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos (A + B) dan
cos (A – B).
Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos (A + B) dan
cos (A – B).
Penyelesaian:
cos A = 5/13 , maka sin A = 12/13
sin B = 24/25 , maka cos B = 7/25
cos (A + B) = cos A⋅ cos B – sin A⋅ sin B
= 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25
= 35/325 − 288/325
= − 253/325
cos (A – B) = cos A⋅ cos B + sin A⋅ sin B
= 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25
= 35/325 + 288/325
= 323/325
cos A = 5/13 , maka sin A = 12/13
sin B = 24/25 , maka cos B = 7/25
cos (A + B) = cos A⋅ cos B – sin A⋅ sin B
= 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25
= 35/325 − 288/325
= − 253/325
cos (A – B) = cos A⋅ cos B + sin A⋅ sin B
= 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25
= 35/325 + 288/325
= 323/325
2. Rumus Sinus Jumlah dan Selisih Dua Sudut
Perhatikan uraian berikut:
sin (A – B) = sin {A + (–B)}
= sin A cos (–B) + cos A sin (–B)
= sin A cos B – cos A sin B
Rumus sinus selisih dua sudut
sin (A – B) = sin A cos B – cos A sin B
Untuk lebih memahami tentang aplikasi rumus sinus jumlah dan selisih dua sudut silahkan perhatikan contoh soal berikut ini
Contoh soal rumus sinus:
Diketahui cos A = – 4/5 dan sin B = 5/13 , sudut A dan B tumpul. Hitunglah sin (A + B) dansin (A – B).
Penyelesaian:
cos A = – 4/5 , maka sin A = 3/5 (kuadran II)
sin B = 5/13 , maka cos B = – 12/13 (kuadran II)
sin (A + B) = sin A cos B + cos A sin B
= 3/5 . (–12/13) + (–4/5) . 5/13
= –36/65 – 20/65
= – 56/65
sin (A – B) = sin A cos B – cos A sin B
= 3/5 . (–12/13) – (–4/5) . 5/13
= –36/65 + 20/65
= – 16/65
cos A = – 4/5 , maka sin A = 3/5 (kuadran II)
sin B = 5/13 , maka cos B = – 12/13 (kuadran II)
sin (A + B) = sin A cos B + cos A sin B
= 3/5 . (–12/13) + (–4/5) . 5/13
= –36/65 – 20/65
= – 56/65
sin (A – B) = sin A cos B – cos A sin B
= 3/5 . (–12/13) – (–4/5) . 5/13
= –36/65 + 20/65
= – 16/65
3. Rumus Tangen Jumlah dan Selisih Dua Sudut
Rumus tangen jumlah dua sudut:
dan selisih dua sudut.
Contoh soal rumus tangen:
Tanpa menggunakan tabel logaritma atau kalkulator, hitunglah tan 105°.
Penyelesaian:
tan 105° = tan (60 + 45)°
= tan 60° tan 45°
1 tan60 tan45
tan 105° = tan (60 + 45)°
= tan 60° tan 45°
1 tan60 tan45
Komentar
Posting Komentar